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Previous work: Can we detect drug
interactions in internet search logs?

* Yes

e For two drugs we associated with hyperglycemia, we
looked at BING search logs for mention of 50
hyperglycemia-related words.

 We compared
e Baseline search for hyperglycemia words
e Search with one drug + hyperglycemia
e Search with second drug + hyperglycemia
e Search for both drugs + hyperglycemia

White et al, ] Am Med Inform Assoc. 2013 May-Jun; 20(3): 404—408.



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3628066/

50“hyperglycemia’

appetite increase
blurred vision
blurry vision
breathing difficulty
breathing trouble
breathless
breathlessness
coma

confused
confusion
decreased libido
decreased sex drive
decreased sexual desire
dehydrated
dehydration
difficulty breathing
dizziness

dizzy

drowsiness
Drowsy

dry mouth

dry skin

erectile dysfunction
fatigue

fatigued

feet tingling
frequent urinating

frequent urination
heel tingling
hunger

hungry

impotence
impotent
increased appetite
increased urination
itchy skin

labored breathing
light headed
lightheaded
light-headed
lightheadedness
loss in weight

loss of weight

low sex drive
polydypsia
polyphagia
polyuria

poor healing

poor wound healing

short of breath shortness of breath

skin tingling
sleepiness

V4

words/phrases

sleepy

slow healing
slow wound healing
thirst

thirstiness

thirsty

tingling feet
tingling heel
tingling skin

tired

tiredness

trouble breathing
unconscious
unconsciousness
urinating
urination
Xerostomia



Web searches? Patient search for
pravastatin & paroxetine and DM-related
words more frequently.
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A large set of health markers
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Hypothesis

* Individual use of digital devices
provides unique information about
signs and symptoms for early
prediction, prevention and
detection of risk factors and disease



Why screens?

Captures broad spectrum of life

e Fulfillment of the digital promise

Increasing generational relevance

e The new iGen

Captures change at the new speed of life

e Quick changes between radically different content

Captures specific attention

* What people are actually looking at

Threads rather than buckets of experience
* Examine sequence, context, and interdependence

Passive data collection

* No other devices, sensors, chargers, things to carry
or wear




SEARCHABLE SCREENSHOT DATABASE
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Security, trust, privacy, recruiting

e Genome Vvs. screenome
* Changing attitudes about personal data

* Risk reward ratio
* Big ask but big reward

e Human subjects
e |IRB approvals and discussions

e Data security

e Encryption, secure servers, de-identification, strict
access limits, offline storage

e Recruiting
e Paid volunteers aged 18-45
e Digitally active
* ~60% acceptance to date
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Informatics challenges adapting Screenome to health

* Create health-specific infrastructure
e Ensure participant privacy/security
 |dentify health terminologies and ontologies (bioontology.org)
* Map non-expert terminologies to controlled vocabularies
e Map screen behaviors to health concepts (e.g. typing speed ~ motor skill)

e Exploratory analysis of screenome data

e Cluster within-individual data, across-individual data
* Characterize modal behaviors, persistence of features over time
e Associate clusters with health concepts/behaviors/diseases

e Focused hypothesis-driven analyses

* |dentify & validate screenome-derived risk factors for disease
* |dentify & validate screenome for disease severity and treatment



Potential Promise of Screenome

Integrate with other diagnostics
Improve predictability of diagnosis
Not dependent on any one commercial product

Include previously unobserved features of life
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Initial Exploratory Health/Drug
Analysis (Adam Lavertu)

e 140 individuals
e LA, Chicago, NY, Stanford

* Screen capture every 5 seconds when device is
active

* 6,541,755 screen captures so far
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Building Lexicon to Detect Health Synonyms on Screens

Reddit

Corpus

\/

Drug lexicon for screening

Antidepressants Pre-trained . - -
1sertraline” word2vec 'zoloft", "paroxetine",
certraing embeddings "wellbutrin", "effexor"
"fluoxetine", ’ ’
"citalopram” "prozac”, "wellbutrin", "SSRI”

Cosine similarity
> 0.5 between

: seed words and . : :
DINENS — Disease lexicon for screening
other words

seed words

Drug seed
words

ﬁ

"suicidal thoughts", "anxiety",

"deep depression”, "manic",

"sad" "depressed" "anxiety attacks", "self-harm"
"depression”

"suicidal"

Depression




Overall Exploratory Workflow

Extract text
from individual
Screenome via

OCR

Filter

|dentify d
stopwords and entity drug

and/or disease
related device
interactions

Scan for drug
disease hits
using lexicons

non-words
from extracted
text
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Home Remedies for Diabetes

Diabetes, also called diabetes mellitus, has
become a very common heath problem.
There are two main types of diabetes- type 1
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Analytical Challenges

e Pop-Up Advertisements (sometimes relevant,
sometimes false positives)

* Who is the patient vs. caregiver/relative
e Other languages
* Many many more...



Thanks! russ.altman@stanford.edu
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Growing literature on social media and health...

e Focused on single media (Facebook, Twitter, patient

forums, internet search)

* Not integrated across activities
 Difficult to understand context

 Difficult to untangle statistical bias
e VVery low temporal resolution
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Cluster Analysis of 3-Day Screenomes N = 30
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